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Abstract
We investigate the efficiency of fair allocations of indivisible goods using the well-
studied price of fairness concept. Previous work has focused on classical fairness notions
such as envy-freeness, proportionality, and equitability. However, these notions can-
not always be satisfied for indivisible goods, leading to certain instances being
ignored in the analysis. In this paper, we focus instead on notions with guaranteed
existence, including envy-freeness up to one good (EF1), balancedness, maximum
Nash welfare (MNW), and leximin. We also introduce the concept of strong price
of fairness, which captures the efficiency loss in the worst fair allocation as opposed
to that in the best fair allocation as in the price of fairness. We mostly provide
tight or asymptotically tight bounds on the worst-case efficiency loss for allocations
satisfying these notions, for both the price of fairness and the strong price of fairness.

Keywords Price of fairness · Indivisible goods · Efficiency · Fair division

1 Introduction

The allocation of scarce resources among interested agents is a problem that arises
frequently and plays a major role in our society. We often want to ensure that the
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allocation that we select is fair to the agents—the literature of fair division, which
dates back to the design of cake-cutting algorithms over half a century ago [20, 35],
provides several ways of defining what fair means. For example, an allocation is envy-
free if it does not generate envy between any pair of agents, proportional if it gives
every agent 1/n of the agent’s utility for the whole set of resources (here n denotes
the number of agents), and equitable if every agent receives the same utility. An
issue orthogonal to fairness is efficiency, or social welfare, which refers to the total
happiness of the agents. A fundamental question is therefore how much efficiency
we might lose if we want our allocation to be fair.

This question was first addressed independently by Bertsimas et al. [10] and
Caragiannis et al. [16], who introduced the price of fairness concept to cap-
ture the efficiency loss due to fairness constraints. In particular, for any fairness
notion and any given resource allocation instance with additive utilities, Caragiannis
et al. defined the price of fairness of the instance to be the ratio between the maximum
social welfare over all allocations and the maximum social welfare over allocations
that are fair according to the notion. The overall price of fairness for this notion is
then defined as the largest price of fairness across all instances. Caragiannis et al. con-
sidered the three aforementioned fairness notions and presented a series of results
on the price of fairness with respect to these notions; they assumed that the agents
have additive utilities and each agent has utility 1 for the entire set of resources. As
an example, they showed that for the allocation of indivisible goods among n agents,
the price of proportionality is n − 1 + 1/n, meaning that the efficiency of the best
proportional allocation can be a linear factor away from that of the best allocation
overall.

Caragiannis et al.’s work sheds light on the trade-off between efficiency and
fairness in the allocation of both divisible and indivisible resources. However, a sig-
nificant limitation of their study is that while an allocation satisfying each of the three
fairness notions always exists when goods are divisible, this is not the case for indi-
visible goods. Indeed, none of the notions can be satisfied in the simple instance with
(at least) two agents and a single good to be allocated. Caragiannis et al. circumvented
this issue by simply ignoring instances in which the fairness notion in question can-
not be satisfied. As a result, their price of fairness analysis, which is meant to capture
the worst-case efficiency loss, fails to cover certain scenarios that may arise in prac-
tice.1 In addition, the fact that certain instances are not taken into account in the price
of fairness have seemingly contradictory consequences. For example, since envy-free
allocations are always proportional when utilities are additive, it may appear at first
glance that the price of envy-freeness must be at least as high as the price of propor-
tionality. This is not necessarily the case, however, because there are instances that
admit proportional but no envy-free allocations.2

1From the above example, one may think that such scenarios are rare exceptions. However, for envy-
freeness, these scenarios are in fact common if the number of goods is not too large compared to the
number of agents [19, 29].
2Indeed, the instance that Caragiannis et al. used to show that the price of proportionality is at least
n−1+1/n admits no envy-free allocation. Thus, it is still possible that the price of envy-freeness is lower
than the price of proportionality for indivisible goods.
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To address these limitations, in this paper we study the price of fairness for indi-
visible goods with respect to fairness notions that can be satisfied in every instance.
Among other notions, we consider envy-freeness up to one good (EF1), balanced-
ness, maximum Nash welfare (MNW), maximum egalitarian welfare (MEW), and
leximin.3 For example, in an EF1 allocation, an agent may envy another agent, but in
such a case there must exist a good in the second agent’s bundle such that the envy
disappears upon removing the good. An MNW allocation maximizes the product of
the utilities that the agents receive, while an MEW allocation maximizes the mini-
mum among these utilities. In addition to deriving bounds on the price of fairness for
these notions, we also introduce the concept of strong price of fairness, which cap-
tures the efficiency loss in the worst fair allocation as opposed to that in the best fair
allocation. The strong price of fairness is relevant in settings where one is guaranteed
an allocation satisfying some fairness notion but has no control over the particular
allocation—for instance, we may be participating in an allocation exercise using an
algorithm that guarantees EF1 or MNW, and wonder whether that fairness guarantee
comes with any assurance on the social welfare. Indeed, certain fair division algo-
rithms such as the envy cycle elimination algorithm [27] may output EF1 allocations
with low efficiency.4 The relationship between the price of fairness and the strong
price of fairness is akin to that between the price of stability and the price of anarchy
for equilibria. While the strong price of fairness is too demanding to yield any non-
trivial guarantee for some fairness notions, as we will see, it does provide meaningful
guarantees for other notions.

1.1 Our Results

The majority of our results can be found in Table 1; we highlight a subset of these
next. For the price of EF1, we provide a lower bound of �

(√
n
)
and an upper bound

of O(n). We then show that two common methods for obtaining an EF1 allocation—
the round-robin algorithm and MNW—have a price of fairness of linear order (for
round-robin the price is exactly n), implying that these methods cannot be used to
improve the upper bound for EF1. On the other hand, if we allow dependence on
the number of goods m, the price of round-robin, and therefore the price of EF1, is
O

(√
n log(mn)

)
—this means that the �

(√
n
)
lower bound is almost tight unless the

number of goods is huge compared to the number of agents. Our result illustrates
a clear difference between EF1 and envy-freeness, as the price of the latter is �(n)

[16]. For MNW, MEW, and leximin, we prove an asymptotically tight bound of �(n)

on the price of fairness. Moreover, with the exception of EF1 and MNW, we establish
exactly tight bounds in the case of two agents for all fairness notions—in particular,
the price of EF1 is between 1.14 and 1.16, implying that there exists an EF1 allocation
whose welfare is close to the optimal welfare.

Our results point to round-robin as a promising allocation method: besides produc-
ing an EF1 allocation with high welfare, it is extremely simple and intuitive, and an

3See Section 2 for the formal definitions of these notions.
4See the example in Theorem 3.5.
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Table 1 Summary of our results

Property P Price of P Strong price of P

General n n = 2 General n n = 2

Envy-freeness up to one
good (EF1)

LB: �
(√

n
)

UB: O(n)

LB: 8/7
UB: 2/

√
3

∞ ∞

Envy-freeness up to any
good (EFX)

− 3/2 − ∞

Round-robin (RR) n 2 n2 4

Balancedness (BAL) �
(√

n
)

4/3 ∞ ∞
Maximum Nash welfare
(MNW)

�(n) LB: 27/23
UB: 5/4

�(n) LB: 27/23
UB: 5/4

Maximum egalitarian wel-
fare (MEW)

�(n) 3/2 ∞ for n ≥ 3 3/2

Leximin (LEX) �(n) 3/2 �(n) 3/2

Pareto optimality (PO) 1 1 �
(
n2

)
3

LB denotes lower bound and UB denotes upper bound. We do not consider the (strong) price of EFX
for general n because it is not known whether an EFX allocation always exists for n > 3. If we allow
dependence on the number of goods m, we have an upper bound of O

(√
n log(mn)

)
on the price of EF1

allocation that it produces is always balanced.5 Most of our upper bounds naturally
give rise to polynomial-time algorithms for computing an allocation satisfying the
fairness notion with the guaranteed welfare. However, there are two notable excep-
tions:6 (i) the proof of Theorem 3.4 requires an agent to partition the goods into
two bundles such that her utilities for the bundles are as equal as possible, an NP-
hard problem; (ii) the upper bound in Theorem 3.9, which relies on Lemma 3.6, is
based on a randomized approach and does not indicate how a desirable round-robin
ordering can be efficiently chosen.

On the strong price of fairness front, we show via a simple instance that the strong
price of EF1 and balancedness are infinite, meaning that there are arbitrarily bad
EF1 and balanced allocations. Nevertheless, a round-robin allocation, which satisfies
these two properties, always has welfare within a factor n2 of the optimal allocation,
and this factor is exactly tight. For MNW and leximin, the strong price of fairness,
like the price of fairness, is of linear order—hence, these two notions provide a better
worst-case guarantee than the round-robin algorithm. However, while the price of
MEW is also�(n), the strong price of MEW is infinite for n ≥ 3 (and 3/2 for n = 2),

5Moreover, a round-robin allocation is likely to be envy-free and proportional as long as the number of
goods is sufficiently larger than the number of agents [28].
6In addition to these exceptions, MNW, MEW, and leximin allocations are hard to compute regardless of
price of fairness considerations (see, e.g., [33], footnote 7).
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meaning that a MEW allocation does not provide any welfare guarantee when there
are at least three agents. Finally, we consider Pareto optimality, for which the price
of fairness is trivially 1, and show that the strong price of Pareto optimality is �

(
n2

)
.

This demonstrates that an allocation that is optimal in the Pareto sense may be quite
far from optimal with respect to social welfare.

1.2 RelatedWork

As we mentioned earlier, the price of fairness was introduced independently by
Bertsimas et al. [10] and Caragiannis et al. [16]. Bertsimas et al. studied the concept
for divisible goods with respect to fairness notions such as proportional fairness and
max-min fairness; in particular, their results on proportional fairness imply that the
price of envy-freeness and the price of MNW for divisible goods are both �

(√
n
)
.7

Caragiannis et al. presented a number of bounds for both goods and chores (i.e., items
that yield negative utility), both when these items are divisible and indivisible. The
price of fairness has subsequently been examined in several other settings, including
for contiguous allocations of divisible goods [3], indivisible goods [37], and divis-
ible chores [22], as well as in the context of machine scheduling [12] and budget
division [31].

Typically, the price of fairness study focuses on quantifying the efficiency loss
solely in terms of the number of agents. A notable exception to this is the work
of Kurz [25], who remarked that certain constructions used to establish worst-case
bounds for indivisible goods require a large number of goods. As a result, Kurz inves-
tigated the dependence of the price of fairness on both the number of agents and the
number of goods, and, as we do for the price of round-robin, found that the price
indeed improves significantly if we limit the number of goods.

Since envy-freeness and proportionality cannot always be satisfied even in the
simplest setting with two agents and one good, a large number of recent papers have
focused on relaxations of these notions, which include EF1, EFX, maximin share
(MMS), and pairwise maximin share (PMMS) [1, 2, 5, 6, 8, 9, 13, 17, 18, 21, 26,
32–34, 36, 38].8 It is known that MMS allocations do not necessarily exist, while
the existence question is open for PMMS [17, 24]. We refer to [17, 30] for further
discussion of work on these notions.

After the publication of the initial version of our work, Barman et al. [5] devised
an algorithm that produces an allocation with social welfare within O

(√
n
)
of the

optimum; together with our result, this implies that the price of EF1 is in fact�
(√

n
)
.

Their algorithm works by starting with an optimal allocation, arranging the goods on
a line so that each bundle in this allocation is connected, giving each agent her favorite
good from her bundle, and updating the allocation by carefully assigning additional
items so as to maintain EF1 and connectivity on the line. Moreover, their algorithm
can be extended to the more general setting where agents have subadditive utilities.

7Interestingly, this stands in contrast to our result that the price of MNW for indivisible goods is �(n).
8See [17] for the definitions of MMS and PMMS.
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2 Preliminaries

Denote by N = {1, 2, . . . , n} the set of agents and M = {1, 2, . . . , m} the set of
goods. Each agent i has a nonnegative utility ui(j) for each good j . The agents’
utilities are additive, meaning that ui

(
M ′) = ∑

j∈M ′ ui(j) for every agent i and
subset of goodsM ′ ⊆ M . Following Caragiannis et al. [16], we normalize the utilities
across agents by assuming that ui(M) = 1 for all i. We refer to a setting with agents,
goods, and utility functions as an instance. An allocation is a partition of M into
bundles (M1, . . . , Mn) such that agent i receives bundle Mi . The (utilitarian) social
welfare of an allocation M is defined as SW(M) := ∑n

i=1 ui(Mi). The optimal
social welfare for an instance I , denoted by OPT(I ), is the maximum social welfare
over all allocations for this instance.

A property P is a function that maps every instance I to a (possibly empty) set of
allocations P(I). Every allocation in P(I) is said to satisfy property P .

We are now ready to define the price of fairness concepts.

Definition 2.1 For any given property P of allocations and any instance, we define
the price of P for that instance to be the ratio between the optimal social welfare and
the maximum social welfare over allocations satisfying P :

Price of P for instance I = OPT(I )

maxM∈P(I) SW(M)
.

The overall price of P is then defined as the supremum price of fairness across all
instances.

Similarly, the strong price of P for a given instance is the ratio between the optimal
social welfare and the minimum social welfare over allocations satisfying P :

Strong price of P for instance I = OPT(I )

minM∈P (I) SW(M)
.

The overall strong price of P is then defined as the supremum price of fairness
across all instances.

We will only consider properties P such that P(I) is nonempty for every instance
I , so the (strong) price of fairness is always well-defined. With the exception of
Theorem 3.8, we will be interested in the price of fairness as a function of n, and
assume that m can be arbitrary.

Next, we define the fairness properties that we consider. The first two properties
are relaxations of the classical envy-freeness notion.

Definition 2.2 (EF1) An allocation is said to satisfy envy-freeness up to one good
(EF1) if for every pair of agents i, i′, there exists a set Ai′ ⊆ Mi′ with |Ai′ | ≤ 1 such
that ui (Mi) ≥ ui (Mi′ \Ai′).

Definition 2.3 (EFX) An allocation is said to satisfy envy-freeness up to any good
(EFX) if for every pair of agents i, i′ and every good g ∈ Mi′ , we have ui(Mi) ≥
ui(Mi′ \{g}).
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It is clear that EFX imposes a stronger requirement than EF1. An EF1 allocation
always exists [27], while for EFX the existence question is still unresolved [17]. As
such, we will only consider EFX in the case of two agents, for which existence is
guaranteed [33].9

The round-robin algorithm, which we describe below, always computes an EF1
allocation (see, e.g., [17]).

Definition 2.4 (RR) The round-robin algorithm works by arranging the agents in
some arbitrary order, and letting the next agent in the order choose her favorite good
from the remaining goods.10 An allocation is said to satisfy round-robin (RR) if it is
the result of applying the algorithm with some ordering of the agents.

Our next property is balancedness, which means that the goods are spread out
among the agents as much as possible. Balancedness and similar cardinality con-
straints have been considered in recent work [13]. In addition to satisfying EF1, an
allocation produced by the round-robin algorithm is also balanced.

Definition 2.5 (BAL) An allocation is said to be balanced (BAL) if ||Mi |−|Mj || ≤ 1
for any i, j .

Next, we define a number of welfare maximizers.

Definition 2.6 (MNW) The Nash welfare of an allocation is defined as∏
i∈N ui(Mi). An allocation is said to be amaximum Nash welfare (MNW) allocation

if it has the maximum Nash welfare among all allocations.11

Definition 2.7 (MEW) The egalitarian welfare of an allocation is defined as
mini∈N ui(Mi). An allocation is said to be a maximum egalitarian welfare (MEW)
allocation if it has the maximum egalitarian welfare among all allocations.

Definition 2.8 (LEX) An allocation is said to be leximin (LEX) if it maximizes
the lowest utility (i.e., the egalitarian welfare), and, among all such allocations,
maximizes the second lowest utility, and so on.

Finally, we define Pareto optimality. While this is an efficiency notion rather than
a fairness notion, we also consider it as it is a fundamental property in the context of
resource allocation.

9Recently, Chaudhury et al. [18] showed that the existence is also guaranteed for three agents.
10In case there are ties between goods, we may assume worst-case tie breaking, since it is possible to
obtain an instance with infinitesimal difference in welfare and any desired tie-breaking between goods by
slightly perturbing the utilities.
11In the case where the maximum Nash welfare is 0, an allocation is an MNW allocation if it gives positive
utility to a set of agents of maximal size and moreover maximizes the product of utilities of the agents in
that set.
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Definition 2.9 (PO) Given an allocation (M1, . . . , Mn), another allocation(
M ′

1, . . . , M
′
n

)
is said to be a Pareto improvement if ui

(
M ′

i

) ≥ ui(Mi) for all i with
at least one strict inequality. An allocation is Pareto optimal (PO) if it does not admit
a Pareto improvement.

Caragiannis et al. [17] showed that an MNW allocation always satisfies EF1 and
Pareto optimality. It is clear from the definition that any leximin allocation is Pareto
optimal and maximizes egalitarian welfare. The problem of computing anMEW allo-
cation has been studied by Bansal and Sviridenko [4] and Bezáková and Dani [11].
Leximin allocations were studied by Bogomolnaia and Moulin [14] and shown to be
applicable in practice by Kurokawa et al. [23].

3 Envy-Freeness Relaxations and Round-Robin Algorithm

In this section, we consider envy-freeness relaxations and the round-robin algorithm,
which always produces an EF1 allocation.

3.1 Envy-Freeness Relaxations

We begin with a general lower bound on the price of EF1.

Theorem 3.1 The price of EF1 is �
(√

n
)
.

Proof Let m = n, r = ⌊√
n
⌋
, and assume that the utilities are as follows:

• For i = 1, . . . , r − 1: ui((i − 1)r + j) = 1
r
for j = 1, . . . , r , and ui(j) = 0

otherwise.
• ur(j) = 1

n−r(r−1) for j = r(r − 1) + 1, . . . , n, and ur(j) = 0 otherwise.

• For i = r + 1, . . . , n: ui(j) = 1
n
for all j .

Consider the allocation that assigns goods ir − r + 1, . . . , ir to agent i for i =
1, . . . , r −1 and the remaining goods to agent r . The social welfare of this allocation
is r . On the other hand, in any EF1 allocation, each of the agents i = r + 1, . . . , n
must receive at least one good—otherwise some agent would receive at least two
goods and agent i would envy her. This means that the social welfare is at most

r · 1
r

+ (n − r) · 1
n

< 2. Hence the price of EF1 is at least r
2 = 	√n


2 .

For two agents, we establish an almost tight bound on the price of EF1 and a tight
bound on the price of EFX. We start with a lower bound for EF1.

Theorem 3.2 For n = 2, the price of EF1 is at least 8
7 ≈ 1.143.

Proof Let m = 3 and 0 < ε < 1/6, and assume that the utilities are as follows:

• u1(1) = 1/3 − 2ε, u1(2) = 1/3 + ε, u1(3) = 1/3 + ε
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• u2(1) = 0, u2(2) = 1/2, u2(3) = 1/2

The optimal social welfare is 4/3 − 2ε, achieved by assigning the first good to
agent 1 and the last two goods to agent 2. However, in any EF1 allocation the last two
goods cannot both be given to agent 2. Hence the social welfare of an EF1 allocation
is at most (1/3 − 2ε) + (1/3 + ε) + 1/2 = 7/6 − ε. Taking ε → 0, we find that the
price of EF1 is at least 4/3

7/6 = 8/7.

We now turn to the upper bound. In order to construct an EF1 allocation with high
welfare, we proceed in a similar manner to the adjusted winner procedure [15], which
is used to allocate divisible goods between two agents. Specifically, we arrange the
goods according to the ratios between the utilities that they yield for the two agents—
the idea is that the agents will then prefer goods at different ends. Roughly speaking,
we then let the agent who obtains a lower utility in an optimal allocation choose a
minimal set of goods for which she is EF1 starting from her end.

Theorem 3.3 For n = 2, the price of EF1 is at most 2√
3

≈ 1.155.

Proof Consider an arbitrary instance. Sort the goods so that u1(1)
u2(1)

≥ u1(2)
u2(2)

≥ · · · ≥
u1(m)
u2(m)

; goods x such that u2(x) = 0 are put at the front and those with u1(x) = 0 at
the back, with arbitrary tie-breaking within each group of goods. (Goods that yield
zero value to both agents can be safely ignored since they have no effect on the
optimal welfare or the maximum welfare of an EF1 allocation.) For ease of notation,
for any 1 ≤ k ≤ m we write L(k) := {1, . . . , k} and R(k) := {k, . . . , m}. We also
define L(0) = R(m + 1) = ∅.

Let S1 :=
{
i | u1(i)

u2(i)
> 1

}
= L(s) for some 0 ≤ s ≤ m and S2 := M \ S1 =

R(s + 1). It is easy to see that s < m. If s = 0, both agents have identical
utilities and the price of EF1 is 1, so we may assume that s > 0. The allo-
cation S = (S1, S2) is an optimal allocation, and the optimal social welfare is
u1(S1) + u2(S2). Without loss of generality, assume that u1(S1) ≤ u2(S2). Note that
we must have u2(S2) ≥ 1

2 , since otherwise both u1(S1) and u2(S2) are smaller than 1
2

and switching S1 and S2 would yield a higher social welfare. We can further assume
that u1(S1) < 1

2 , because otherwise S is also an EF1 allocation and the price of
EF1 is 1.

Next, we describe how to obtain a particular EF1 allocation F . Let f be the
smallest index such that f ≥ s and u1(L(f )) ≥ u1(R(f + 2)). Clearly, f < m.
In the allocation F = (F1, F2), we assign the goods F1 := L(f ) to agent 1, and
F2 := R(f + 1) to agent 2. The pseudocode for computing F is presented as
Algorithm 1. See also Fig. 1.

Fig. 1 Illustration for the proof of Theorem 3.3
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Allocation F satisfies EF1 The EF1 condition is satisfied for agent 1, because
u1(F1) ≥ u1(F2\{f + 1}) by definition.

For agent 2, since f is the smallest index such that f ≥ s and u1(L(f )) ≥
u1(R(f + 2)), we have either f = s or u1(L(f − 1)) < u1(R(f + 1)).

If f = s, then F coincides with the optimal allocation S, and u2(F2) = u2(S2) ≥
1
2 . Clearly EF1 is satisfied.

Else, f > s, and we have 0 < u1(L(f − 1)) < u1(R(f + 1)). Note also that
u2(R(f + 1)) > 0. Therefore,

u1(L(f − 1))

u2(L(f − 1))
≥ u1(f − 1)

u2(f − 1)
≥ u1(f + 1)

u2(f + 1)
≥ u1(R(f + 1))

u2(R(f + 1))
,

where we take a fraction to be infinite if it has denominator 0.12 (None of the fractions
can have both numerator and denominator 0.)

Since u1(L(f − 1)) < u1(R(f + 1)), this implies that

u2(L(f − 1))

u2(R(f + 1))
≤ u1(L(f − 1))

u1(R(f + 1))
< 1.

Thus,

u2(F2) = u2(R(f + 1)) > u2(L(f − 1)) = u2(F1\{f }),

12To see the first and third inequalities, one may prove by induction that in general, if we have a1
b1

≥ · · · ≥
ak

bk
, then a1

b1
≥ a1+···+ak

b1+···+bk
≥ ak

bk
. The case k = 2 holds because a1

b1
≥ a1+a2

b1+b2
is equivalent to a1

b1
≥ a2

b2
, and

similarly for a1+a2
b1+b2

≥ a2
b2
.
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implying that EF1 is again satisfied.

The price of EF1 for this instance is at most 2√
3
Now we analyze the social welfare of

the allocation F and compare it to the optimal social welfare.
If f = s, the price of EF1 is 1. Assume from now on that f > s. We have

u1(F2) > u1(L(f − 1)) ≥ u1(L(s)) = u1(S1) and
u1(S2)
u2(S2)

≥ u1(F2)
u2(F2)

. Since u1(F2) >

0, we also have u1(S2) > 0. Moreover, u2(F2), u2(S2) > 0. Thus,

u1(F1) + u2(F2) ≥ (1 − u1(F2)) + u1(F2)u2(S2)

u1(S2)

= 1 +
(

u2(S2)

u1(S2)
− 1

)
u1(F2)

> 1 +
(

u2(S2)

u1(S2)
− 1

)
u1(S1)

= 1 − u1(S1) + u2(S2)

u1(S2)
· u1(S1)

= 1 − u1(S1) + u2(S2)

1 − u1(S1)
· (1 + (u1(S1) − 1))

= 1 − u1(S1) + u2(S2)

1 − u1(S1)
− u2(S2).

Therefore the ratio between the optimal social welfare and the social welfare of F is

α := u1(S1) + u2(S2)

u1(F1) + u2(F2)
<

u1(S1) + u2(S2)

u2(S2)
1−u1(S1)

+ 1 − u2(S2) − u1(S1)
.

We further analyze the last expression. First, taking its partial derivative with
respect to u2(S2) gives

(1 − u1(S1))(1 − 2u1(S1))

(u1(S1)2 + u1(S1)(u2(S2) − 2) + 1)2
,

which is always positive when u1(S1) < 1
2 . This shows that the last expression is

monotone increasing in u2(S2). Thus

α <
u1(S1) + 1
1

1−u1(S1)
− u1(S1)

.

Finally, this expression is maximized when u1(S1) = 2 − √
3 and yields a value

of 2√
3
, completing the proof.

The gap on the price of EF1 between Theorems 3.2 and 3.3 is only approximately
0.01. For EFX, we establish a tight bound in the case of two agents.
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Theorem 3.4 For n = 2, the price of EFX is 3/2.

Proof Lower bound: Let m = 3 and 0 < ε < 1/2, and assume that the utilities are
as follows:

• u1(1) = 1/2 + ε, u1(2) = 1/2 − ε, u1(3) = 0.
• u2(1) = 1/2 + ε, u2(2) = 0, u2(3) = 1/2 − ε.

The optimal social welfare is 3/2 − ε, achieved by assigning the first two goods
to agent 1 and the last good to agent 2. On the other hand, in any EFX allocation, no
agent can get both of the goods that they positively value. Hence, the social welfare
of an EFX allocation is at most 1. Taking ε → 0, we find that the price of EFX is at
least 3/2.

Upper bound: Consider an arbitrary instance. If in an optimal allocation both
agents get utility at least 1/2, this allocation is also envy-free and hence EFX, so the
price of EFX is 1. Otherwise, the maximum welfare is at most 1 + 1/2 = 3/2. Now
we show that there always exists an EFX allocation with social welfare at least 1; this
immediately yields the desired bound.

Let the first agent partition the goods into two bundles such that her values for
the bundles are as equal as possible. Denote by x and 1 − x the values of the two
bundles, where x ≥ 1 − x. Suppose that all goods of zero value, if any, are in the
second bundle. Let y ≥ 1 − y be the corresponding values for the second agent,
and assume without loss of generality that y ≥ x. Consider the partition of the first
agent, and assume that the two bundles yield value z and 1 − z to the second agent,
respectively. If z ≤ 1 − z, by assigning the first bundle to the first agent and the
second bundle to the second agent, we have an envy-free allocation with welfare at
least 1. Else, z ≥ 1 − z. By definition of y, we also have z ≥ y ≥ x. We assign the
first bundle to the second agent and the second bundle to the first agent. The second
agent is clearly envy-free. If the first agent still has envy after removing some good i

from the first bundle, then by moving good i to the second bundle, we create a more
equal partition, a contradiction. Hence the allocation is EFX to the first agent. The
social welfare of this allocation is z + (1 − x) ≥ 1.

Next, we give a simple instance showing that EF1 and EFX allocations can have
arbitrarily bad welfare.

Theorem 3.5 The strong price of EF1 is ∞. For n = 2, the strong price of EFX is
∞.

Proof Let m = n, and assume that ui(i) = 1 for all i and ui(j) = 0 otherwise. The
allocation that assigns good i to agent i for every i has social welfare n. On the other
hand, the allocation that assigns good i − 1 to agent i for i = 2, . . . , n and good n to
agent 1 is EF1 and EFX, but has social welfare 0. The conclusion follows.
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3.2 Round-Robin Algorithm

We now turn our attention to the round-robin algorithm. We show that it is always
possible to order the agents to obtain a welfare of 1.

Lemma 3.6 For any instance, there exists an ordering of the agents such that the
round-robin algorithm implemented with this ordering produces an allocation with
social welfare at least 1, and this bound is tight.

Proof We claim that if we choose the ordering of the agents uniformly at random,
the expected social welfare is at least 1. The desired bound immediately follows from
this claim.

To prove the claim, consider an arbitrary agent i, and assume without loss of gen-
erality that ui(1) ≥ ui(2) ≥ . . . ≥ ui(m). Note that if the agent is ranked j th in the
ordering, her utility is at least ui(j) + ui(n + j) + ui(2n + j) + · · · + ui(kn + j),
where k = 	(m − j)/n
. Hence, the agent’s expected utility is at least

1

n
·

n∑

j=1

	(m−j)/n
∑

r=0

ui(rn + j) = 1

n
·

m∑

j=1

ui(j) = 1

n
.

It follows from linearity of expectation that the expected social welfare is at least
n · 1

n
= 1, as claimed.

The tightness of the bound follows from the instance where every agent has utility
1 for the same good.

Lemma 3.6 yields a linear price of fairness for round-robin.

Theorem 3.7 The price of round-robin is n. Consequently, the price of EF1 is at
most n.

Proof Upper bound: Consider an arbitrary instance. Since every agent receives utility
at most 1, the optimal social welfare is at most n. On the other hand, by Lemma 3.6,
there exists an ordering of the agents such that the round-robin algorithm yields
welfare at least 1. Hence the price of round-robin is at most n.

Lower bound: Let m = xn for some large x that is divisible by n, and assume
that the utilities are such that for each agent i, ui(j) = 1/xi for j = 1, . . . , xi and
ui(j) = 0 otherwise.

Consider the allocation that assigns goods 1, . . . , x to agent 1, and xi−1+1, . . . , xi

to agent i for every i ≥ 2. In this allocation, agent 1 gets utility 1, while each remain-
ing agent gets utility

(
xi − xi−1

)
/xi = 1 − 1/x. The social welfare is therefore

n − (n − 1)/x. This converges to n for large x.
On the other hand, consider the round-robin algorithm with an arbitrary ordering

of the agents, and assume without loss of generality that agents always break ties in
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favor of goods with lower numbers. Hence, regardless of the ordering, the goods get
chosen in the order 1, 2, . . . , m. As a result, every agent gets exactly 1/n of their
valued goods, so her utility is 1/n, and the social welfare is 1. Hence the price of
round-robin is n.

The argument for the lower bound in Theorem 3.7 works even if we can choose
a new ordering of the agents in every round. This means that the fixed order is not a
barrier to obtaining a better price of fairness, but rather the “each agent picks exactly
once in every round” aspect of the algorithm.

One may notice that the lower bound construction uses an exponential number
of goods. This is in fact necessary to obtain an instance with a high price of round-
robin. As we show next, the �

(√
n
)
lower bound on the price of EF1 is almost tight

as long as m is not too large compared to n. At a high level, our proof proceeds by
considering an optimal allocation and choosing a range

[
2−�−1, 2−�

]
that the largest

number of agents’ utilities for goods in this allocation fall into. In the case where
a sufficiently large number of goods correspond to this range, we may choose an
arbitrary round-robin ordering—we can lower bound the welfare resulting from the
round-robin algorithm by observing that as long as we have not run out of goods from
this range with respect to an agent, every pick must give the agent a utility at least the
minimum utility that the agent obtains from this range. On the other hand, if only a
small number of goods belong to this range, we need to be more careful in choosing
the ordering.

Theorem 3.8 The price of round-robin is O
(√

n log(mn)
)
. Consequently, the price

of EF1 is O
(√

n log(mn)
)
.

Proof Consider any instance I . First, observe that if OPT(I ) ≤ 65
√

n log2(mn),
then Lemma 3.6 immediately yields the desired result. We therefore focus on the
case where OPT(I ) > 65

√
n log2(mn). We claim that there exists an ordering for

which the round-robin algorithm produces an allocation with social welfare at least
OPT(I )

65
√

n log2(mn)
.

Fix an optimal allocation M = (M1, . . . , Mn), and let r := �log2(m
√

n)�. For
each i ∈ N , let us partition Mi into M0

i ∪ M1
i ∪ · · · ∪ Mr

i , where M�
i is defined by

M�
i =

{{
j ∈ Mi | ui(j) ∈ (

2−�−1, 2−�
]}

if � �= r;
{
j ∈ Mi | ui(j) ∈ [

0, 2−�
]}

if � = r .

Furthermore, define M� := ∪n
i=1M

�
i and SW�(M) := ∑n

i=1 ui

(
M�

i

)
.

Let �∗ := arg max�∈{0,...,r−1} SW�(M). We have

SW�∗(M) ≥ 1

r

(
r−1∑

�=0

SW�(M)

)

= OPT(I ) − SWr (M)

r
.
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However, since agent i values each item in Mr
i at most 2−r ≤ 1

m
√

n
, we have

ui(M
r
i ) ≤ 1/

√
n. This implies that SWr (M) ≤ √

n, which is no more than
OPT(I )/65. Hence,

SW�∗(M) ≥ 64

65r
· OPT(I ) ≥ 32 · OPT(I )

65 log2(mn)
. (1)

Thus, it suffices to show the existence of an ordering such that round-robin
produces an allocation with social welfare at least SW�∗(M)/

√
n.

Observe that (1) implies that SW�∗(M) > 32
√

n. We now consider two cases,

based on T :=
∣∣∣M�∗ ∣∣∣. Since ui

(
M�∗

i

)
≤ 2−�∗ ∣∣∣M�∗

i

∣∣∣ for each i, we have

SW�∗(M) ≤ 2−�∗
T .

Case 1: T > 2n. In this case, we will show that the round-robin algorithm with
arbitrary ordering yields an allocation with social welfare at least SW�∗(M)/

√
n.

To see this, let us consider the round-robin procedure with arbitrary ordering, and
consider the set of goods that are picked in the first t := 	T/(2n)
 rounds; let St ⊆ M

denote this set. Now, observe that

n∑

i=1

∣∣∣M�∗
i \ St

∣∣∣ ≥ T − |St | = T − n · t ≥ T

2
.

This implies that

n∑

i=1

ui

(
M�∗

i \ St

)
≥ T

2
· 2−�∗−1 ≥ SW�∗(M)

4
> 8

√
n.

Since ui

(
M�∗

i \ St

)
≤ 1, there must be more than 8

√
n agents such that M�∗

i �

St . Let N∗ denote the set of such agents.
We claim that, in each of the first t rounds, every agent i ∈ N∗ must receive an

item she values at least 2−�∗−1. The reason is that agent i picks her favorite good,
which she must value at least as much as the good(s) left unpicked in M�∗

i \ St .
Moreover, she values the latter at least 2−�∗−1, so this must also be a lower bound of
her utility for the former.

From the claim in the previous paragraph, we can conclude that the social welfare
of the allocation produced is at least

|N∗| · t · 2−�∗−1 > 8
√

n · T

4n
· 2−�∗−1 ≥ SW�∗(M)√

n

as desired. Note that we use the assumption T > 2n to conclude that t ≥ T/(4n) in
the first inequality above.

Case 2: T ≤ 2n. In this case, we will show that if we choose the ordering π in
a careful manner, then the social welfare obtained in the first round alone already
suffices.
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Similarly to Case 1, observe that since
∑n

i=1 ui

(
M�∗

i

)
= SW�∗(M) > 8

√
n,

there are more than 8
√

n agents i whose M�∗
i is non-empty. Let N∗ denote the set of

such agents.
We will construct the ordering π step-by-step as follows. For k = 1, . . . , �4√n�,

we let π(k) be any agent i such that (1) i is not yet in the ordering and (2) not all
goods in M�∗

i are already picked by π(1), . . . , π(k − 1). Note that such an agent
exists because, at each step k, at most two candidate agents become invalid: the agent
i = π(k), and the agent i′ whose good in M�∗

i′ is picked by π(k). Since we start
with 8

√
n valid candidates, even after �4√n�− 1 steps, there are still valid candidate

agents to be chosen from.
The remainder of the ordering can be chosen arbitrarily. We now argue that the

resulting round-robin allocation has the desired social welfare. To see this, for k =
1, . . . , �4√n�, observe that agent π(k) must pick a good that is worth at least 2−�∗−1

to her in the first round, since not all goods in M�∗
π(k) have been picked. As a result,

the social welfare is at least
(
4
√

n
) · 2−�∗−1 ≥ (

2T/
√

n
) · 2−�∗−1 ≥ SW�∗(M)√

n
,

where the first inequality follows from T ≤ 2n.

We end this section by establishing an exact bound on the strong price of round-
robin.

Theorem 3.9 The strong price of round-robin is n2.

Proof Upper bound: Consider an arbitrary instance. Since every agent receives utility
at most 1, the optimal social welfare is at most n. On the other hand, in the round-
robin algorithm, the first agent gets to choose an item ahead of all other agents in
every round and therefore does not envy any other agent in the resulting allocation.
This implies that her utility, and hence the social welfare, is at least 1/n. It follows
that the strong price of round-robin is at most n2.

Lower bound: Let m be a large number divisible by n, and assume that the utilities
are as follows:

• u1(i) = 1
m
for all i.

• For i = 2, . . . , n: ui(i − 1) = 1, and ui(j) = 0 otherwise.

Consider the allocation that assigns good i − 1 to agent i for every i = 2, . . . , n,
and the remaining goods to agent 1. In this allocation, every agent i ≥ 2 receives
utility 1. Agent 1 receives utility m−n+1

m
, which converges to 1 for large m. Therefore

the social welfare converges to n.
On the other hand, consider the round-robin algorithm with the ordering of the

agents 1, . . . , n, and assume without loss of generality that agents always break ties
in favor of goods with lower numbers. The first agent gets utility exactly 1/n, while
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the remaining agents get zero utility since their only valuable good is “stolen” by the
agent before them in the first round. Hence the social welfare is 1/n. This means that
the strong price of round-robin is n2, as desired.

4 Balancedness

In this section, we consider balancedness. We begin by establishing an asymptotically
tight bound on the price of balancedness.

Theorem 4.1 The price of balancedness is �
(√

n
)
.

Proof Lower bound: Consider the instance in Theorem 3.1. The social welfare can
be as high as r = 	√n
, while a similar argument shows that the social welfare of
any balanced allocation is at most 2. The conclusion follows.

Intuitively, for the upper bound, we divide the agents into two groups according
to whether they receive a sufficiently large number of goods in an optimal allocation
or not. There cannot be too many agents in the first group, and therefore they cannot
make a significant contribution to the optimal welfare, so we may ignore them. For
agents in the second group, we let each of them keep some number of goods that they
like most; we choose this number so that it is possible to redistribute the remaining
goods and obtain a balanced allocation.

Upper bound: If OPT(I ) ≤ 4
√

n, the result follows immediately from Lemma 3.6.
We therefore assume that OPT(I ) > 4

√
n. We claim that for any instance I , the

maximum social welfare of a balanced allocation is always within a factor 4
√

n of
the optimal social welfare; this claim implies the desired upper bound. In fact, we

will show that there is a balanced allocationM such that SW(M) ≥ OPT(I )−√
n

2
√

n
; this

suffices for our claim because OPT(I )−√
n

2
√

n
≥ OPT(I )

4
√

n
. We consider two cases.

Case 1: m ≥ n. Fix an optimal allocation, and let A be the set of agents who
receive at least m√

n
goods in the optimal allocation, and B the complement set of

agents. Since there are at most
√

n agents inA, they contribute at most
√

n to OPT(I ),
so the agents in B contribute at least OPT(I ) − √

n. We let each agent in B keep her⌈
m
2n

⌉
most valuable goods (or all of her goods, if she has fewer than this number of

goods). Note that each such agent keeps at least a
⌈

m
2n

⌉
/ m√

n
≥ 1

2
√

n
fraction of her

goods. Since the agents in B originally have a total utility of at least OPT(I ) − √
n,

the utility of the kept goods is at least OPT(I )−√
n

2
√

n
. Moreover, since

⌈
m
2n

⌉ ≤ ⌊
m
n

⌋
due

to the assumptionm ≥ n, the remaining goods can be reallocated to obtain a balanced

allocation, which has social welfare at least OPT(I )−√
n

2
√

n
.

Case 2: m < n. Fix an optimal allocation, and let A be the set of agents who
receive at least

√
n goods in the optimal allocation, and B the complement set of

agents. Since there are at most
√

n agents inA, they contribute at most
√

n to OPT(I ),
so the agents in B contribute at least OPT(I ) − √

n. We let each agent in B keep
her most valuable good (if she receives at least one good). By a similar reasoning
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as in Case 1, this yields a total utility of at least OPT(I )−√
n√

n
. The remaining goods

can be reallocated to obtain a balanced allocation, which has social welfare at least
OPT(I )−√

n√
n

≥ OPT(I )−√
n

2
√

n
.

For two agents, we give an exact bound on the welfare that can be lost due to
imposing balancedness.

Theorem 4.2 For n = 2, the price of balancedness is 4/3.

Proof Lower bound: Let m be a large even number, and assume that the utilities are
as follows:

• u1(1) = 1 and u1(i) = 0 otherwise.
• u2(i) = 1

m
for all i.

Consider the allocation that assigns the first good to the first agent and the remaining
goods to the second agent. The social welfare is 1+ (1−1/m), which converges to 2
for large m. On the other hand, in any balanced allocation, the first agent gets utility
at most 1 while the second agent gets utility m

2 · 1
m

= 1
2 , so the social welfare is at

most 3/2. Hence the price of balancedness is at least 4/3.
Upper bound: Consider an arbitrary instance. If m is odd, we may add a dummy

good that yields zero utility to both agents—this does not change the optimal social
welfare or the maximum social welfare of a balanced allocation. We may therefore
assume that m is even.

Sort the goods so that u1(1)−u2(1) ≥ u1(2)−u2(2) ≥ · · · ≥ u1(m)−u2(m). Let
s be the last good such that u1(s)−u2(s) ≥ 0, and assume without loss of generality
that s ≥ m/2. An optimal allocation assigns the set of goods S1 = {1, . . . , s} to the
first agent and the complement set S2 to the second agent, yielding social welfare
u1(S1)+u2(S2) = u1(S1)+(1−u2(S1)) = 1+�, where � := u1(S1)−u2(S1) ≥ 0.
On the other hand, consider the balanced allocation that assigns goods 1, . . . , m/2 to
the first agent and the remaining goods to the second agent. Note that at most half of
the goods in S1 are reallocated to the second agent, and these are the goods with the
lowest difference in utility between the two agents. Hence, the utility loss going from
the first to the second allocation is at most �/2, implying that the social welfare of
the second allocation is at least 1+ �

2 . The price of balancedness is therefore at most

sup
0≤�≤1

1 + �

1 + �
2

.

This ratio is increasing in � and reaches the maximum at � = 1, where its value
is 4/3, completing the proof.

Finally, the same construction as in Theorem 3.5 shows that balanced allocations
can have arbitrarily bad welfare.

Theorem 4.3 The strong price of balancedness is ∞.
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5 Welfare Maximizers

In this section, we consider allocations that maximize different measures of wel-
fare. To start with, we show that every MNW and leximin allocation yields a decent
welfare.

Lemma 5.1 For any instance, every MNW allocation and every leximin allocation
has social welfare at least 1, and both bounds are tight.

Proof We first establish the bound for MNW. Consider any MNW allocation where
agent i receives bundle Mi , and assume for contradiction that

∑n
k=1 uk(Mk) < 1.

Fix any agent i. Since the agent has utility 1 for the entire set of items, we have∑n
k=1 ui(Mk) = 1. If ui(Mk) ≤ uk(Mk) for all k = 1, . . . , n, we would have

1 =
n∑

k=1

ui(Mk) ≤
n∑

k=1

uk(Mk) < 1,

a contradiction, so there exists j �= i such that ui

(
Mj

)
> uj

(
Mj

)
. Construct a

directed graph with vertices 1, 2, . . . , n, and add an edge from i to j if ui

(
Mj

)
>

uj

(
Mj

)
. From the above observation, every vertex has at least one outgoing edge,

implying that the graph consists of a directed cycle. For every edge i → j in the
cycle, we give Mj to agent i instead of agent j . If we consider the change in the
multiset of the n utilities between the old and new allocations, at least one number
increases while others remain the same. This means that either we have decreased
the number of agents who get zero utility, or keep this number fixed and increase the
product of utilities of the agents who get nonzero utility. Either case contradicts the
definition of an MNW allocation.

To show the bound for leximin, we apply the same argument. An improvement
in the multiset of utilities as described in the last step contradicts the definition of
leximin.

Finally, the tightness of the bounds follows from the instance where every agent
has utility 1 for the same good.

Lemma 5.1 allows us to show that the price of MNW and the strong price of MNW,
the price of MEW, and both prices of leximin are of linear order.

Theorem 5.2 The price of MNW, the strong price of MNW, the price of MEW, the
price of leximin, and the strong price of leximin are �(n).

Proof We start with MNW. It suffices to show that the price of MNW is �(n) and
the strong price of MNW is O(n).

Lower bound: Let m = n and 0 < ε < 1, and assume that the utilities are as
follows:

• u1(1) = 1 and u1(j) = 0 otherwise.
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• For i = 2, . . . , n: ui(i − 1) = 1 − ε, ui(i) = ε, and ui(j) = 0 otherwise.

Consider the allocation that assigns good i − 1 to agent i for i = 2, . . . , n, and
good n to agent 1. The social welfare of this allocation is (n−1)(1−ε). On the other
hand, the unique MNW allocation assigns good i to agent i for every i. The social
welfare of this allocation is 1 + (n − 1)ε. Taking ε → 0, we find that the price of
MNW is �(n).

Upper bound: Consider an arbitrary instance. Since every agent receives utility at
most 1, the optimal social welfare is at most n. On the other hand, by Lemma 5.1, the
social welfare of any MNW allocation is at least 1. The conclusion follows.

Notice that in the lower bound instance above, the unique MNW allocation is also
the unique MEW allocation as well as the unique leximin allocation. This means that
the price of MEW, the price of leximin, and the strong price of leximin are all �(n).

It remains to show that the price of MEW and the strong price of leximin are
O(n). For leximin, this follows from Lemma 5.1 and the fact that the optimal social
welfare is at most n. We claim that for any instance, there exists a MEW allocation
with social welfare at least 1. To prove this claim, we apply the same argument as
in Lemma 5.1, but starting with a MEW allocation with maximum social welfare.
An improvement in the multiset of utilities as described in the argument does not
decrease the egalitarian welfare and strictly increases the social welfare, which gives
us the desired contradiction.

Surprisingly, MEW allocations can be arbitrarily bad when there are at least three
agents.

Theorem 5.3 For n > 2, the strong price of MEW is infinite.

Proof Let m = n, and assume that the utilities are as follows:

• u1(1) = 1 and u1(j) = 0 otherwise.
• For i = 2, . . . , n: ui(i − 1) = 1 and ui(j) = 0 otherwise.

Observe that in any allocation, some agent does not get a desired good. This means
that every allocation has egalitarian welfare 0, and all allocations are MEW. Now,
there exists an allocation with social welfare 0, for example the allocation that assigns
good i + 1 to agent i for i = 1, . . . , n − 1, and assigns good 1 to agent n. Since
there also exists an allocation with positive social welfare, the strong price of MEW
is infinite.

We now turn to the case of two agents. For MNW, we establish almost tight bounds
on both prices of fairness.

Theorem 5.4 For n = 2, the price of MNW and the strong price of MNW are at least
27/23 ≈ 1.174 and at most 5/4 = 1.25.

Proof It suffices to show that the price of MNW is at least 27/23 and the strong price
of MNW is at most 5/4.
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Lower bound: Let m = 3 and 0 < ε < 1/7, and assume that the utilities are as
follows:

• u1(1) = 2/3, u1(2) = 1/3, u1(3) = 0.
• u2(1) = 4/7 − ε, u2(2) = 1/7 + ε, u2(3) = 2/7.

The optimal social welfare is 9/7, obtained by assigning the first two goods to the
first agent and the last good to the second agent. On the other hand, one can check
that the maximum Nash welfare is 2/7 + 2ε/3, obtained (uniquely) by assigning the
first good to the first agent and the last two goods to the second agent. This allocation
yields social welfare 23/21 + ε. Taking ε → 0, we find that the price of MNW is at
least 27/23.

Upper bound: Consider an arbitrary instance. Suppose that the optimal social wel-
fare is x. If x ≤ 5/4, then Lemma 5.1 immediately implies that the price of MNW of
this instance is at most 5/4.

We now focus on the case where x ≥ 5/4. Let us assume further that, in an optimal
allocation, the first agent has utility x1 and the second has utility x2, where x1 ≥ x2
and x1 + x2 = x. Since x1 ≤ 1, we have x1/x2 ≤ 1/(x − 1) ≤ 4.

Next, consider any MNW allocation. Suppose that in this allocation the first agent
has utility y1 and the second has utility y2. Since the Nash welfare of this allocation
must be at least that of the optimal allocation, we have y1y2 ≥ x1x2. As a result, the
social welfare of this allocation is y1 + y2 ≥ 2

√
y1y2 ≥ 2

√
x1x2, where the first

inequality follows from
(√

y1 − √
y2

)2 ≥ 0. Thus, the price of MNW of this instance
is at most

x1 + x2

2
√

x1x2
= 1 + 1

2
·
(

4

√
x1

x2
− 4

√
x2

x1

)2

≤ 1 + 1

2
·
(

4
√
4 − 4

√
1

4

)2

= 5/4,

where the inequality follows from 1 ≤ x1/x2 ≤ 4.

Finally, we derive the exact bound for MEW and leximin with two agents.
Note that since all leximin allocations are MEW, Theorem 5.5 immediately implies
Theorem 5.6.

Theorem 5.5 For n = 2, the price of MEW and the strong price of MEW are 3/2.

Proof It suffices to show that the price of MEW is at least 3/2 and the strong price
of MEW is at most 3/2.

Lower bound: Let m = 3 and 0 < ε < 1/2, and assume that the utilities are as
follows:

• u1(1) = 1/2, u1(2) = 1/2 − ε, u1(3) = ε.
• u2(1) = 1/2, u2(2) = ε, u2(3) = 1/2 − ε.
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The optimal social welfare is 3/2−2ε, obtained by assigning the first two goods to
the first agent and the last good to the second agent. On the other hand, the maximum
egalitarian welfare is 1/2, which can be obtained only by assigning the first good to
one agent and the remaining two goods to the other agent. This allocation has social
welfare 1. Taking ε → 0, we find that the price of MEW is at least 3/2.

Upper bound: Consider an arbitrary instance, and denote by x the maximum
egalitarian welfare. The optimal social welfare is at most 1 + x, and the social
welfare of any MEW allocation is at least 2x. Consider any MEW allocation, and
suppose that agent 1 receives utility x and agent 2 receives utility y ≥ x. In
the allocation where the bundles of the two agents are swapped, the utilities are
1 − x and 1 − y ≤ 1 − x. Since x is the maximum egalitarian welfare, we have
x ≥ 1 − y, or x + y ≥ 1. This means that the social welfare of the original
allocation is at least 1, so the social welfare of any MEW allocation is at least
max{2x, 1}.

The strong price of MEW is therefore at most 1+x
max{2x,1} . If x ≤ 1/2, this quantity

is at most 1+x
1 ≤ 3

2 . On the other hand, if x > 1/2, this quantity is at most 1+x
2x =

1
2x + 1

2 < 3
2 . The conclusion follows.

Theorem 5.6 For n = 2, the price of leximin and the strong price of leximin are 3/2.

6 Pareto Optimality

In this section, we consider Pareto optimality. Since any allocation that maximizes
social welfare is necessarily Pareto optimal, the price of Pareto optimality is trivially
1. By establishing a tight lower bound on the welfare of a Pareto optimal allocation,
we show that the strong price of Pareto optimality is quadratic. Our result indicates
that while Pareto optimality is sometimes referred to as ‘efficiency’, it does not
necessarily fare well if efficiency is measured in terms of social welfare.

Lemma 6.1 For any instance, every Pareto optimal allocation has social welfare at
least 1/n, and this bound is tight.

Proof To establish the bound, it suffices to show that in any Pareto optimal allo-
cation, some agent receives utility at least 1/n. Suppose that this is not the case.
Since the utility of each agent for the entire set of goods is 1, every agent envies at
least one other agent. This implies that the envy graph, which has the n agents as
its vertices and in which there is a directed edge from one agent to another if the
former agent envies the latter, contains a directed cycle. By giving agent j ’s bundle
to agent i for every edge i → j in the cycle, we obtain a Pareto improvement, a
contradiction.

The tightness of the bound follows from the instance in Theorem 6.2.

Theorem 6.2 The strong price of Pareto optimality is �
(
n2

)
.

1090 Theory of Computing Systems (2021) 65:1069–1093



Proof Upper bound: Consider an arbitrary instance. Since every agent receives utility
at most 1, the optimal social welfare is at most n. On the other hand, by Lemma 6.1,
every Pareto optimal allocation has social welfare at least 1/n. The conclusion
follows.

Lower bound: Assume that n ≥ 2. Let m = n, 0 < ε < 1/n, and assume that the
utilities are as follows:

• u1(1) = 1
n

+ ε and u1(j) = 1
n

− ε
n−1 otherwise.

• For i = 2, . . . , n: ui(i − 1) = 1 − ε, ui(i) = ε, and ui(j) = 0 otherwise.

Consider the allocation that assigns good i − 1 to agent i for i = 2, . . . , n, and

good n to agent 1. The welfare of this allocation is (n − 1)(1 − ε) +
(
1
n

− ε
n−1

)
=

n−1+ 1
n
−

(
n − 1 + 1

n−1

)
ε. On the other hand, the allocation that assigns good i to

agent i for i = 1, . . . , n is Pareto optimal. This is because in any Pareto improvement,
agent 1 must receive good 1, and it follows that agent i must receive good i for every

i. The social welfare of this allocation is
(
1
n

+ ε
)

+ (n − 1)ε = 1
n

+ nε. Taking

ε → 0 yields the desired result.

We also show an exact bound for the case of two agents.

Theorem 6.3 For n = 2, the strong price of Pareto optimality is 3.

Proof The instance in Theorem 6.2 shows that the strong price of Pareto optimality
is at least 3. To show that this is tight, consider an arbitrary instance and an optimal
allocation in this instance. Assume that the two agents receive utility x and y in this
allocation, where x ≥ y. In any Pareto optimal allocation, at least one agent must
receive utility at least y; otherwise the optimal allocation is a Pareto improvement.
In combination with Lemma 6.1, this implies that the social welfare of every Pareto
optimal allocation is at least max{y, 1/2}.

The strong price of Pareto optimality is therefore at most x+y
max{y,1/2} ≤ 1+y

max{y,1/2} .
If y ≤ 1/2, this quantity is at most 2(1 + y) ≤ 3. On the other hand, if y > 1/2, this
quantity is at most 1+y

y
= 1

y
+ 1 < 3. The conclusion follows.

7 Conclusion and FutureWork

In this paper, we study the price of fairness for indivisible goods using several fairness
notions that can always be satisfied. For most cases, we exhibit tight or asymptot-
ically tight bounds on the worst-case efficiency loss that can occur due to fairness
constraints. Interestingly, both the round-robin andMNW allocations, which are EF1,
can have social welfare a linear factor away from the optimum—however, round-
robin performs significantly better than this worst-case bound as long as the number
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of goods is not huge compared to the number of agents. The linear bound that we
obtain for MNW stands in contrast to the result of Bertsimas et al. [10] in the divisible
goods setting, where the price of MNW is �

(√
n
)
.

A potential direction for future work is to perform similar analyses but using egal-
itarian welfare instead of utilitarian welfare as the benchmark. This has been done,
for example, in the context of contiguous allocations [3, 37]. One could also study
the price of fairness for the chore division problem, where chores refer to items that
yield negative utility for the agents. Indeed, almost all of the notions that we consider
in the goods setting have direct analogs in the chore setting, and it would be interest-
ing to see whether the corresponding bounds in the two settings turn out to be similar
as well.
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